login
A267503
Primes p such that p-1 is squarefree and all prime divisors of p-1 other than 5 are also in the sequence.
5
2, 3, 7, 11, 23, 31, 43, 47, 67, 71, 139, 211, 283, 311, 331, 431, 463, 659, 683, 691, 863, 947, 967, 1291, 1303, 1319, 1367, 1427, 1699, 1867, 1979, 1987, 2011, 2111, 2131, 2311, 2531, 3011, 3083, 4099, 4423, 4643, 4691, 4831, 5171, 5179, 5683, 5839, 6299, 6911, 7283, 7591, 8563, 8863, 9227, 9871, 9931, 10343, 10627, 11887, 11923, 12911
OFFSET
1,1
COMMENTS
Is this sequence infinite?
LINKS
MAPLE
N:= 20000: # to get all terms <= N
Res:= 2:
Agenda:= {3, 11}:
P:= {2, 10}:
g:= proc(t) local s; s:= p*t; if s < N then s else NULL fi end proc:
while Agenda <> {} do
p:= min(Agenda);
Res:= Res, p;
newP:= map(g , P);
P:= P union newP;
Agenda:= Agenda minus {p} union select(isprime, map(`+`, newP, 1));
od:
Res; # Robert Israel, Mar 15 2019
MATHEMATICA
fa = FactorInteger; is[2, p_] = True; is[2, p_];
is[n_, p_] := PrimeQ[n] && MoebiusMu[n - 1] ≠ 0 && Union@Table[is[fa[n - 1][[i, 1]], p] || fa[n - 1][[ i, 1]] == p , {i, Length[fa[n - 1]]}] == {True}; Select[Prime[Range[10000]], is[#, 5] &]
KEYWORD
nonn
AUTHOR
STATUS
approved