OFFSET
1,1
COMMENTS
An equivalent definition: numbers n such that phi(n) is equal to the squarefree kernel of n-1.
Minimal value of first differences (between odd terms) is 4. Primes p such that both p and p + 4 are terms are: 3, 7, 43, 67, 79, 103, 223, 439, 463, 499, 643, 823, ... - Zak Seidov, Apr 16 2013
The density of this set in A000040 is Artin's constant A = A005596 = 37.39...%, see Mirsky. - Charles R Greathouse IV, Oct 26 2015
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..25000, Oct 25 2015 (extending earlier b-file of Zak Seidov)
Theodor Estermann, Einige Sätze über quadratfreie Zahlen, Math. Ann. 105:1 (1931), pp. 653-662.
Leon Mirsky, The number of representations of an integer as the sum of a prime and a k-free integer, American Mathematial Monthly 56:1 (1949), pp. 17-19.
EXAMPLE
phi(43)=42, 42=2^1*3^1*7^1, 2*3*7=42.
p=223 is here because p-1=222=2*3*37
MAPLE
isA039787 := proc(n)
if isprime(n) then
numtheory[issqrfree](n-1) ;
else
false;
end if;
end proc:
for n from 2 to 100 do
if isA039787(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Apr 17 2013
with(numtheory): lis:=[]; for n from 1 to 10000 do if issqrfree(ithprime(n)-1) then lis:=[op(lis), ithprime(n)]; fi; od: lis; # N. J. A. Sloane, Oct 25 2015
MATHEMATICA
Select[Prime[Range[132]], SquareFreeQ[#-1]&](* Zak Seidov, Aug 22 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(780) | IsSquarefree(p-1)]; // Bruno Berselli, Mar 03 2011
(PARI) is(n)=isprime(n) && issquarefree(n-1) \\ Charles R Greathouse IV, Jul 02 2013
(PARI) forprime(p=2, 1e3, if(issquarefree(p-1), print1(p", "))); \\ Altug Alkan, Oct 26 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Labos Elemer
STATUS
approved