OFFSET
1,3
COMMENTS
A strict partition is a partition into distinct parts.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000
EXAMPLE
n = 12 = 2*2*3 = prime(1)*prime(1)*prime(2) encodes strict partition [1,2,4]. So a(12) = 1+2+4 = 7. Value a(n) = 7 occurs A000009(7) = 5 times, for n in {12, 17, 21, 22, 25}.
MAPLE
a:= n-> ((l-> add(l[j]+j-1, j=1..nops(l)))(sort([seq(
numtheory[pi](i[1])$i[2], i=ifactors(n)[2])]))):
seq(a(n), n=1..100);
MATHEMATICA
a[n_] := Function[l, Sum[l[[j]]+j-1, {j, 1, Length[l]}]][Sort[ Flatten[ Table[ Array[ PrimePi[i[[1]]]&, i[[2]]], {i, FactorInteger[n]}]]]];
Array[a, 100] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 29 2015
STATUS
approved