login
A266472
Number of 5 X n binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.
1
6, 19, 67, 232, 735, 2090, 5371, 12645, 27639, 56726, 110334, 204903, 365538, 629531, 1050952, 1706538, 2703140, 4187021, 6355333, 9470138, 13875377, 20017232, 28468369, 39956595, 55398509, 75938776, 102995704, 138313857, 184024492
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1/181440)*n^9 + (1/8064)*n^8 + (29/15120)*n^7 + (13/960)*n^6 + (301/8640)*n^5 + (101/384)*n^4 - (34619/90720)*n^3 + (37531/10080)*n^2 - (4171/2520)*n + 4.
Conjectures from Colin Barker, Jan 10 2019: (Start)
G.f.: x*(6 - 41*x + 147*x^2 - 303*x^3 + 410*x^4 - 382*x^5 + 248*x^6 - 109*x^7 + 30*x^8 - 4*x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)
EXAMPLE
Some solutions for n=4:
..0..0..1..1....0..1..1..1....0..0..0..1....0..0..0..1....0..1..1..1
..0..1..0..0....1..0..0..0....0..1..1..1....0..1..1..0....1..0..0..1
..1..0..0..0....1..0..0..1....1..0..1..0....0..1..1..0....1..0..1..0
..1..0..0..0....1..0..1..0....1..1..0..0....1..0..0..0....1..1..0..0
..1..0..0..0....1..1..0..0....1..1..1..0....1..0..0..1....1..1..1..1
CROSSREFS
Row 5 of A266470.
Sequence in context: A041673 A137195 A055916 * A259804 A060579 A183326
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 29 2015
STATUS
approved