login
A265332
a(n) is the index of the column in A265901 where n appears; also the index of the row in A265903 where n appears.
15
1, 2, 1, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 3, 5, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 7, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4
OFFSET
1,2
COMMENTS
If all 1's are deleted, the remaining terms are the sequence incremented. - after Franklin T. Adams-Watters Oct 05 2006 comment in A051135.
Ordinal transform of A162598.
LINKS
T. Kubo and R. Vakil, On Conway's recursive sequence, Discr. Math. 152 (1996), 225-252.
FORMULA
a(1) = 1; for n > 1, a(n) = A051135(n).
EXAMPLE
Illustration how the sequence can be constructed by concatenating the frequency counts Q_n of each successive level n of A004001-tree:
--
1 Q_0 = (1)
|
_2__ Q_1 = (2)
/ \
_3 __4_____ Q_2 = (1,3)
/ / | \
_5 _6 _7 __8___________ Q_3 = (1,1,2,4)
/ / / | / | \ \
_9 10 11 12 13 14 15___ 16_________ Q_4 = (1,1,1,2,1,2,3,5)
/ / / / | / / | |\ \ | \ \ \ \
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
--
The above illustration copied from the page 229 of Kubo and Vakil paper (page 5 in PDF).
MATHEMATICA
terms = 120;
h[1] = 1; h[2] = 1;
h[n_] := h[n] = h[h[n - 1]] + h[n - h[n - 1]];
seq[nmax_] := seq[nmax] = (Length /@ Split[Sort @ Array[h, nmax, 2]])[[;; terms]];
seq[nmax = 2 terms];
seq[nmax += terms];
While[seq[nmax] != seq[nmax - terms], nmax += terms];
seq[nmax] (* Jean-François Alcover, Dec 19 2021 *)
PROG
(Scheme) (define (A265332 n) (if (= 1 n) 1 (A051135 n)))
CROSSREFS
Essentially same as A051135 apart from the initial term, which here is set as a(1)=1.
Cf. A162598 (corresponding other index).
Cf. A265754.
Cf. also A267108, A267109, A267110.
Sequence in context: A123507 A188804 A122580 * A107041 A336812 A281426
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 09 2016
STATUS
approved