OFFSET
1,2
COMMENTS
If all 1's are deleted, the remaining terms are the sequence incremented. - after Franklin T. Adams-Watters Oct 05 2006 comment in A051135.
Ordinal transform of A162598.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..8192
T. Kubo and R. Vakil, On Conway's recursive sequence, Discr. Math. 152 (1996), 225-252.
FORMULA
a(1) = 1; for n > 1, a(n) = A051135(n).
EXAMPLE
Illustration how the sequence can be constructed by concatenating the frequency counts Q_n of each successive level n of A004001-tree:
--
1 Q_0 = (1)
|
_2__ Q_1 = (2)
/ \
_3 __4_____ Q_2 = (1,3)
/ / | \
_5 _6 _7 __8___________ Q_3 = (1,1,2,4)
/ / / | / | \ \
_9 10 11 12 13 14 15___ 16_________ Q_4 = (1,1,1,2,1,2,3,5)
/ / / / | / / | |\ \ | \ \ \ \
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
--
The above illustration copied from the page 229 of Kubo and Vakil paper (page 5 in PDF).
MATHEMATICA
terms = 120;
h[1] = 1; h[2] = 1;
h[n_] := h[n] = h[h[n - 1]] + h[n - h[n - 1]];
seq[nmax_] := seq[nmax] = (Length /@ Split[Sort @ Array[h, nmax, 2]])[[;; terms]];
seq[nmax = 2 terms];
seq[nmax += terms];
While[seq[nmax] != seq[nmax - terms], nmax += terms];
seq[nmax] (* Jean-François Alcover, Dec 19 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 09 2016
STATUS
approved