login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows, where T(n, k) is the coefficient of degree k of the polynomial Product_{j=0..n} (1-x^(3*j+1))*(1-x^(3*j+2)).
0

%I #17 Feb 04 2019 07:26:34

%S 1,-1,-1,1,1,-1,-1,1,-1,0,2,0,-1,1,-1,-1,1,1,-1,-1,1,-1,0,2,-1,-1,3,

%T -1,-1,2,-2,-2,2,-1,-1,3,-1,-1,2,0,-1,1,-1,-1,1,1,-1,-1,1,-1,0,2,-1,

%U -1,3,-2,-1,4,-2,-2,3,-3,-2,5,-3,-3,5,-2,-2,6,-2,-2,5

%N Irregular triangle read by rows, where T(n, k) is the coefficient of degree k of the polynomial Product_{j=0..n} (1-x^(3*j+1))*(1-x^(3*j+2)).

%C Borwein conjectures that T(n,k) >= 0 when k is a multiple of 3, and T(n,k) <= 0 is not a multiple of 3.

%C The length of the 0th row is 4 and, for n > 0, the length of the n-th row is 3*n^2+1.

%H George E. Andrews, <a href="http://dx.doi.org/10.1006/jsco.1995.1061">On a Conjecture of Peter Borwein</a>, Journal of Symbolic Computation, Volume 20, Issues 5-6, November 1995, Pages 487-501.

%H Jiyou Li, <a href="http://arxiv.org/abs/1512.01191">A note on the Borwein conjecture</a>, arXiv:1512.01191 [math.CO], 2015.

%e For n=0, the polynomial is 1 - x - x^2 + x^3.

%e The first two rows are:

%e 1, -1, -1, 1;

%e 1, -1, -1, 1, -1, 0, 2, 0, -1, 1, -1, -1, 1.

%t row[n_] := CoefficientList[Product[(1-x^(3j+1))(1-x^(3j+2)), {j, 0, n}], x]; Table[row[n], {n, 0, 3}] // Flatten (* _Jean-François Alcover_, Sep 27 2018 *)

%o (PARI) row(n) = Vec(prod(j=0, n, (1-x^(3*j+1))*(1-x^(3*j+2))));

%K sign,tabf

%O 0,11

%A _Michel Marcus_, Dec 04 2015