OFFSET
0,11
COMMENTS
Borwein conjectures that T(n,k) >= 0 when k is a multiple of 3, and T(n,k) <= 0 is not a multiple of 3.
The length of the 0th row is 4 and, for n > 0, the length of the n-th row is 3*n^2+1.
LINKS
George E. Andrews, On a Conjecture of Peter Borwein, Journal of Symbolic Computation, Volume 20, Issues 5-6, November 1995, Pages 487-501.
Jiyou Li, A note on the Borwein conjecture, arXiv:1512.01191 [math.CO], 2015.
EXAMPLE
For n=0, the polynomial is 1 - x - x^2 + x^3.
The first two rows are:
1, -1, -1, 1;
1, -1, -1, 1, -1, 0, 2, 0, -1, 1, -1, -1, 1.
MATHEMATICA
row[n_] := CoefficientList[Product[(1-x^(3j+1))(1-x^(3j+2)), {j, 0, n}], x]; Table[row[n], {n, 0, 3}] // Flatten (* Jean-François Alcover, Sep 27 2018 *)
PROG
(PARI) row(n) = Vec(prod(j=0, n, (1-x^(3*j+1))*(1-x^(3*j+2))));
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Michel Marcus, Dec 04 2015
STATUS
approved