login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265196
Irregular triangle read by rows, where T(n, k) is the coefficient of degree k of the polynomial Product_{j=0..n} (1-x^(3*j+1))*(1-x^(3*j+2)).
0
1, -1, -1, 1, 1, -1, -1, 1, -1, 0, 2, 0, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 0, 2, -1, -1, 3, -1, -1, 2, -2, -2, 2, -1, -1, 3, -1, -1, 2, 0, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 0, 2, -1, -1, 3, -2, -1, 4, -2, -2, 3, -3, -2, 5, -3, -3, 5, -2, -2, 6, -2, -2, 5
OFFSET
0,11
COMMENTS
Borwein conjectures that T(n,k) >= 0 when k is a multiple of 3, and T(n,k) <= 0 is not a multiple of 3.
The length of the 0th row is 4 and, for n > 0, the length of the n-th row is 3*n^2+1.
LINKS
George E. Andrews, On a Conjecture of Peter Borwein, Journal of Symbolic Computation, Volume 20, Issues 5-6, November 1995, Pages 487-501.
Jiyou Li, A note on the Borwein conjecture, arXiv:1512.01191 [math.CO], 2015.
EXAMPLE
For n=0, the polynomial is 1 - x - x^2 + x^3.
The first two rows are:
1, -1, -1, 1;
1, -1, -1, 1, -1, 0, 2, 0, -1, 1, -1, -1, 1.
MATHEMATICA
row[n_] := CoefficientList[Product[(1-x^(3j+1))(1-x^(3j+2)), {j, 0, n}], x]; Table[row[n], {n, 0, 3}] // Flatten (* Jean-François Alcover, Sep 27 2018 *)
PROG
(PARI) row(n) = Vec(prod(j=0, n, (1-x^(3*j+1))*(1-x^(3*j+2))));
CROSSREFS
Sequence in context: A317992 A228085 A154782 * A171157 A194301 A194341
KEYWORD
sign,tabf
AUTHOR
Michel Marcus, Dec 04 2015
STATUS
approved