login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263841
Expansion of (1 - 2*x - x^2)/(sqrt(1+x)*(1-3*x)^(3/2)*2*x) - 1/(2*x).
1
1, 3, 9, 28, 87, 271, 843, 2619, 8123, 25153, 77763, 240054, 740017, 2278329, 7006093, 21520872, 66039651, 202462113, 620164491, 1898109900, 5805127269, 17741909157, 54188530641, 165405964227, 504601360389, 1538559689751, 4688812503053, 14282580916834, 43486805133903
OFFSET
0,2
LINKS
A. Asinowski and G. Rote, Point sets with many non-crossing matchings, arXiv preprint arXiv:1502.04925 [cs.CG], 2015. See Table 1.
FORMULA
D-finite with recurrence: -(n+1)*(n^2+n-3)*a(n) + 2*(n^3+3*n^2-4*n-3)*a(n-1) + 3*(n-1)*(n^2+3*n-1)*a(n-2) = 0. - R. J. Mathar, Feb 17 2016
From Mélika Tebni, Jan 24 2024: (Start)
a(n) = A005773(n+1) + A132894(n).
E.g.f.: (1+x)*exp(x)*(BesselI(0,2*x) + BesselI(1,2*x)). (End)
From Mélika Tebni, Jan 25 2024: (Start)
a(n) = Sum_{k=0..n} A189911(k)*binomial(n,k).
a(n) = Sum_{k=0..n} (k+1)*binomial(n,k)*binomial(n-k,floor((n-k)/2)). (End)
MAPLE
A263841 := n -> add((k+1)*binomial(n, k)*binomial(n-k, iquo(n-k, 2)), k = 0 .. n):
seq(A263841(n), n = 0 .. 28); # Mélika Tebni, Jan 25 2024
MATHEMATICA
CoefficientList[Series[(1-2x-x^2)/(Sqrt[1+x] (1-3x)^(3/2) 2x)-1/(2x), {x, 0, 30}], x] (* Harvey P. Dale, Aug 21 2017 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-2*x-x^2)/(sqrt(1+x)*(1-3*x)^(3/2)*2*x)-1/(2*x)) \\ Altug Alkan, Nov 10 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 02 2015
STATUS
approved