login
A263657
Table T(m, n) of number of (0, 1)-necklaces without zigzags with m 1's and n 0's, read by antidiagonals (see reference for precise definition).
5
0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 3, 3, 3, 1, 1, 0, 1, 1, 0, 1, 1, 3, 4, 4, 3, 1, 1, 0, 1, 1, 0, 1, 1, 4, 5, 7, 5, 4, 1, 1, 0, 1
OFFSET
0,41
COMMENTS
See figure 2 on page 16 in the reference.
A zigzag is a substring which is either 010 or 101. The necklaces 01 and 10 are considered zigzags. Necklaces do not allow turnover.
LINKS
E. Munarini and N. Z. Salvi, Circular Binary Strings without Zigzags, Integers: Electronic Journal of Combinatorial Number Theory 3 (2003), #A19.
EXAMPLE
Table starts:
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
1 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 ...
1 0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
1 0 1 1 3 4 7 8 11 14 17 20 25 28 33 38 ...
1 0 1 1 3 5 8 12 17 23 30 38 47 57 68 80 ...
1 0 1 1 4 6 11 17 27 37 52 68 90 112 141 171 ...
1 0 1 1 4 7 14 23 37 57 82 115 157 207 268 341 ...
1 0 1 1 5 8 17 30 52 82 128 185 265 363 491 644 ...
1 0 1 1 5 9 20 38 68 115 185 285 423 608 850 1160 ...
CROSSREFS
Main diagonal is A263658. Antidiagonal sums are A263659.
Sequence in context: A341281 A076452 A076453 * A261769 A005590 A142598
KEYWORD
nonn,tabl
AUTHOR
Felix Fröhlich, Oct 23 2015
EXTENSIONS
a(45)-a(90) from Andrew Howroyd, Feb 26 2017
STATUS
approved