login
A263656
Number of length-2n central circular binary strings without zigzags (see reference for precise definition).
6
0, 0, 4, 6, 12, 30, 70, 168, 412, 1014, 2514, 6270, 15702, 39468, 99516, 251586, 637500, 1618638, 4117102, 10488684, 26758762, 68354250, 174810354, 447533586, 1146836662, 2941443180, 7550434480, 19395863358, 49859516292, 128252962434, 330101861850
OFFSET
0,3
COMMENTS
See page 6 in the reference.
A zigzag is a substring which is either 010 or 101. The central binary strings are those that contain an equal number of 0's and 1's.
LINKS
E. Munarini and N. Z. Salvi, Circular Binary Strings without Zigzags, Integers: Electronic Journal of Combinatorial Number Theory 3 (2003), #A19.
FORMULA
a(n) = (1/n)*(3*(n-1)*a(n-1) - 4*(n-4)*a(n-2) + (7*n-27)*a(n-3) - 6*a(n-4) + (7*n-37)*a(n-5) - 3*(n-6)*a(n-6)) for n >= 6. - Andrew Howroyd, Feb 26 2017
EXAMPLE
For n=3 the 6 strings are 000111, 001110, 011100, 111000, 110001, 100011.
MATHEMATICA
a[n_ /; n < 6] := {0, 0, 4, 6, 12, 30}[[n + 1]]; a[n_] := a[n] = (-(3*(n - 6)*a[n - 6]) + (7*n - 37)*a[n - 5] - 6*a[n - 4] + (7*n - 27)*a[n - 3] - 4*(n - 4)*a[n - 2] + 3*(n - 1)*a[n - 1])/n;
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
CROSSREFS
Main diagonal of A263655.
Sequence in context: A375197 A056495 A351523 * A178674 A025018 A102043
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Oct 23 2015
EXTENSIONS
corrected a(1) and a(17)-a(30) from Andrew Howroyd, Feb 26 2017
STATUS
approved