login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = phi(n)^n - n^phi(n), where phi(n) is Euler's totient function.
1

%I #21 Sep 08 2022 08:46:13

%S 0,-1,-1,0,399,28,162287,61440,9546255,1038576,74062575399,16756480,

%T 83695120256591,78356634560,35181809198207,281470681743360,

%U 246486713303685957375,101559922656192,604107995057426434824791,1152921479006846976

%N a(n) = phi(n)^n - n^phi(n), where phi(n) is Euler's totient function.

%C a(n) < n^n/e. If n is prime, a(n)/n^n = (1-1/n)^n - 1/n -> 1/e as n -> infinity. - _Robert Israel_, Sep 18 2015

%H Robert Israel, <a href="/A261768/b261768.txt">Table of n, a(n) for n = 1..388</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotientFunction.html">Totient Function</a>

%F a(n) = A000010(n)^n - n^A000010(n) = A000010(n)^n - A062981(n).

%p seq(numtheory:-phi(n)^n - n^numtheory:-phi(n),n=1..30); # _Robert Israel_, Sep 18 2015

%t Table[EulerPhi[n]^n - n^EulerPhi[n], {n, 1, 20}]

%o (PARI) a(n) = eulerphi(n)^n - n^eulerphi(n) \\ _Anders Hellström_, Aug 31 2015

%o (Magma) [EulerPhi(n)^n-n^EulerPhi(n): n in [1..20]]; // _Vincenzo Librandi_, Sep 01 2015

%Y Cf. A000010, A062981.

%K sign

%O 1,5

%A _Ilya Gutkovskiy_, Aug 31 2015