login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261768
a(n) = phi(n)^n - n^phi(n), where phi(n) is Euler's totient function.
1
0, -1, -1, 0, 399, 28, 162287, 61440, 9546255, 1038576, 74062575399, 16756480, 83695120256591, 78356634560, 35181809198207, 281470681743360, 246486713303685957375, 101559922656192, 604107995057426434824791, 1152921479006846976
OFFSET
1,5
COMMENTS
a(n) < n^n/e. If n is prime, a(n)/n^n = (1-1/n)^n - 1/n -> 1/e as n -> infinity. - Robert Israel, Sep 18 2015
LINKS
Eric Weisstein's World of Mathematics, Totient Function
FORMULA
a(n) = A000010(n)^n - n^A000010(n) = A000010(n)^n - A062981(n).
MAPLE
seq(numtheory:-phi(n)^n - n^numtheory:-phi(n), n=1..30); # Robert Israel, Sep 18 2015
MATHEMATICA
Table[EulerPhi[n]^n - n^EulerPhi[n], {n, 1, 20}]
PROG
(PARI) a(n) = eulerphi(n)^n - n^eulerphi(n) \\ Anders Hellström, Aug 31 2015
(Magma) [EulerPhi(n)^n-n^EulerPhi(n): n in [1..20]]; // Vincenzo Librandi, Sep 01 2015
CROSSREFS
Sequence in context: A235958 A187515 A235569 * A274446 A253598 A046013
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 31 2015
STATUS
approved