OFFSET
0,2
COMMENTS
In general, if j > 0, a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} ((1 + x^(a*k+b))/(1 - x^(a*k+b)))^j, then a(n) ~ Gamma(b/a)^j * 2^(j/2 - 3/2 - 2*b*j/a) * a^(-j/4 - 1/4 + b*j/(2*a)) * exp(Pi*sqrt(j*n/a)) * j^(1/4 - j/4 + b*j/(2*a)) * Pi^(b*j/a - j) * n^(j/4 - 3/4 - b*j/(2*a)).
FORMULA
a(n) ~ exp(Pi*sqrt(3*n)/2) * 2^(1/4) * Gamma(1/4)^3 / (8 * 3^(1/8) * Pi^(9/4) * n^(3/8)).
MATHEMATICA
nmax=60; CoefficientList[Series[Product[((1+x^(4*k+1))/(1-x^(4*k+1)))^3, {k, 0, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 28 2015
STATUS
approved