login
A260332
Labelings of n diamond-shaped posets with 4 vertices per diamond where the labels follow the poset relations whose associated reading permutation avoids 231 in the classical sense.
19
1, 2, 18, 226, 3298, 52450, 881970
OFFSET
0,2
COMMENTS
According to Yang-Jiang (2021) these are the 5-Schroeder numbers. If confirmed, this will prove Michael Weiner's conjectures and enable us to extend the sequence. Yang & Jiang (2021) give an explicit formula for the m-Schroeder numbers in Theorem 2.4. - N. J. A. Sloane, Mar 28 2021
By diamond-shaped poset with 4 vertices, we mean a poset on four elements with e_1 < e_2, e_1 < e_3, e_2 < e_4, e_3 < e_4, and no order relations between e_2 and e_3. In the Hasse diagram for such a poset, we have a least element, two elements in the level above, and one element in the top level, so the diagram resembles a diamond. The associated permutation is the permutation obtained by reading the labels of each poset by levels left to right, starting with the least element.
Also the number of labelings of n diamond-shaped posets with 4 vertices per diamond where the labels follow the poset relations whose associated reading permutation avoids 312 in the classical sense via reverse complement Wilf equivalence.
Conjecture: Also the number of lattice paths (Schroeder paths) from (0,0) to (n,4n) with unit steps N=(0,1), E=(1,0) and D=(1,1) staying weakly above the line y = 4x. - Michael D. Weiner, Jul 24 2019
REFERENCES
Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.
LINKS
M. Paukner, L. Pepin, M. Riehl, and J. Wieser, Pattern Avoidance in Task-Precedence Posets, arXiv:1511.00080 [math.CO], 2015.
Lin Yang, Yu-Yuan Zhang, and Sheng-Liang Yang, The halves of Delannoy matrix and Chung-Feller properties of the m-Schröder paths, Linear Alg. Appl. (2024).
Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
FORMULA
There is a complicated recursive formula available in Paukner et al.
Yang & Jiang (2021) give an explicit formula for the 5-Schroeder numbers in Theorem 2.4. - N. J. A. Sloane, Mar 28 2021
Conjecture: a(n) = Sum_{k=1..n} binomial(n,k)*binomial(4*n,k-1)*2^k/n for n > 0. - Michael D. Weiner, Jul 23 2019
From Peter Bala, Jun 16 2023: (Start)
Conjectures: 1) the g.f. A(x) = 1 + 2*x + 18*x^2 + 226*x^3 + ... satisfies A(x)^4 = (1/x) * the series reversion of ((1 - x)/(1 + x))^4.
2) Define b(n) = (1/4) * [x^n] ((1 + x)/(1 - x))^(4*n). Then A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ).
3) a(n) = 2 * hypergeom([1 - n, -4*n], [2], 2) for n >= 1 (equivalent to Weiner's conjecture above).
4) [x^n] A(x)^n = (2*n) * hypergeom([1 - n, 1 - 5*n], [2], 2) for n >= 1. (End)
EXAMPLE
For a single diamond (n=1) poset with 4 vertices, we must label the least element 1 and the greatest element 4, and the two central elements can be labeled either 2, 3 or 3, 2 respectively. Thus the associated permutations are 1234 and 1324.
CROSSREFS
The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021
Sequence in context: A349652 A364825 A245112 * A254999 A364167 A357603
KEYWORD
nonn,more
AUTHOR
Manda Riehl, Jul 29 2015
STATUS
approved