login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260183
Expansion of f(x, x^2) * f(x^4, x^8) / f(-x^3, -x^6)^2 in powers of x where f(, ) is Ramanujan's general theta function.
1
1, 1, 1, 2, 3, 4, 6, 8, 10, 14, 18, 23, 30, 38, 47, 60, 74, 91, 114, 139, 169, 207, 250, 301, 364, 436, 520, 622, 739, 875, 1038, 1224, 1439, 1694, 1985, 2321, 2714, 3162, 3677, 4275, 4956, 5735, 6634, 7655, 8819, 10155, 11669, 13389, 15354, 17575, 20091
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/2) * eta(q^2) * eta(q^8) * eta(q^12)^2 / (eta(q) * eta(q^4) * eta(q^6) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, ...].
a(n) = A003105(2*n + 1).
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 10*x^8 + 14*x^9 + ...
G.f. = 1/q + q + q^3 + 2*q^5 + 3*q^7 + 4*q^9 + 6*q^11 + 8*q^13 + 10*q^15 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, x^12] QPochhammer[ x^10, x^12] QPochhammer[ x^12, x^24] QPochhammer[ x^8] / QPochhammer[x], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^24 + A)), n))};
CROSSREFS
Cf. A003105.
Sequence in context: A095913 A376622 A102848 * A134157 A274194 A237751
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 10 2015
STATUS
approved