login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134157
Number of partitions of n into parts that are odd or == +- 4 mod 10.
1
1, 1, 1, 2, 3, 4, 6, 8, 10, 14, 18, 23, 30, 38, 48, 61, 76, 94, 117, 144, 176, 216, 262, 317, 384, 462, 554, 664, 792, 942, 1120, 1326, 1566, 1848, 2174, 2552, 2992, 3499, 4084, 4762, 5540, 6434, 7464, 8642, 9991, 11538, 13302, 15314, 17612, 20225, 23196
OFFSET
0,4
COMMENTS
Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 7, Equ. (1.4). MR0858826 (88b:11063).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^2, -x^8) / f(-x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function.
Euler transform of period 10 sequence [ 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, ...].
G.f.: ( Sum_{k>=0} x^(2*(k^2+k)) / ((1 - x^2) * (1 - x^4) * ... * (1 - x^(2*k))) ) / Product_{k>0} 1 - x^(2*k-1).
G.f.: Sum_{k>=0} x^(k*(3*k+3)/2) * (1 + x) * (1 + x^2) * ... * (1 + x^(2*k)) / ( (1 - x) * (1 - x^2) * ... * (1 - x^(2*k+1)) ).
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 10*x^8 + 14*x^9 + ...
G.f. = q^49 + q^169 + q^289 + 2*q^409 + 3*q^529 + 4*q^649 + 6*q^769 + 8*q^889 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, x^10] QPochhammer[ x^8, x^10] QPochhammer[ x^10] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Oct 26 2015 *)
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^-{ 1, 0, 1, 1, 1, 1, 1, 0, 1, 0}[[Mod[k, 10, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, Oct 26 2015 *)
PROG
(PARI) {a(n) = my(t); if( n<0, 0, t = 1 / (1 - x) + x * O(x^n); polcoeff( sum(k=1, (sqrtint(24*n + 1) - 1)\6, t = t * x^(3*k) / ((1 - x^k) * (1 - x^(2*k + 1))) + x * O(x^n), t), n))};
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - [ 0, 1, 0, 1, 1, 1, 1, 1, 0, 1][k%10 + 1] * x^k, 1 + x * O(x^n)), n))};
CROSSREFS
Sequence in context: A376622 A102848 A260183 * A274194 A237751 A045476
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 10 2007
STATUS
approved