login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259920
Expansion of phi(-x^5) * f(-x^5) / f(-x, -x^4) in powers of x where phi() and f() are Ramanujan theta functions.
1
1, 1, 1, 1, 2, 0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 5, 3, 5, 2, 6, 3, 6, 3, 7, 4, 7, 5, 9, 5, 9, 5, 11, 6, 11, 7, 14, 7, 15, 9, 17, 9, 17, 9, 21, 11, 21, 12, 25, 13, 25, 15, 29, 16, 31, 17, 35, 19, 37, 21, 42, 22, 44, 25, 49, 27, 52, 29, 58, 32, 61
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 23, 8th equation.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^5)^3 / (f(-x^10) * f(-x^2, -x^3)) in powers of x where f(,) is the Ramanujan general theta function.
Expansion of phi(-x^5) * G(x) in powers of x where f(,) is the Ramanujan general theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jul 09 2015
Euler transform of period 10 sequence [ 1, 0, 0, 1, -2, 1, 0, 0, 1, -1, ...].
G.f.: (Sum_{k in Z} (-1)^k * x^(5*k^2)) / (Product_{k in Z} 1 - x^abs(5*k + 1)).
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + x^11 + ...
G.f. = q^-1 + q^59 + q^119 + q^179 + 2*q^239 + q^359 + q^419 + 2*q^479 + q^539 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^5] / (QPochhammer[ x, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}];
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ -1, 0, 0, -1, 2, -1, 0, 0, -1, 1}[[Mod[k, 10, 1]]], {k, n}], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^ [1, -1, 0, 0, -1, 2, -1, 0, 0, -1][k%10+1]), n))};
CROSSREFS
Sequence in context: A066360 A061358 A025866 * A364334 A048881 A026931
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 08 2015
STATUS
approved