Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Mar 12 2021 22:24:48
%S 1,1,1,1,2,0,1,1,2,1,2,1,3,2,2,2,3,1,3,2,5,3,5,2,6,3,6,3,7,4,7,5,9,5,
%T 9,5,11,6,11,7,14,7,15,9,17,9,17,9,21,11,21,12,25,13,25,15,29,16,31,
%U 17,35,19,37,21,42,22,44,25,49,27,52,29,58,32,61
%N Expansion of phi(-x^5) * f(-x^5) / f(-x, -x^4) in powers of x where phi() and f() are Ramanujan theta functions.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).
%D Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 23, 8th equation.
%H G. C. Greubel, <a href="/A259920/b259920.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of f(-x^5)^3 / (f(-x^10) * f(-x^2, -x^3)) in powers of x where f(,) is the Ramanujan general theta function.
%F Expansion of phi(-x^5) * G(x) in powers of x where f(,) is the Ramanujan general theta function and G() is a Rogers-Ramanujan function. - _Michael Somos_, Jul 09 2015
%F Euler transform of period 10 sequence [ 1, 0, 0, 1, -2, 1, 0, 0, 1, -1, ...].
%F G.f.: (Sum_{k in Z} (-1)^k * x^(5*k^2)) / (Product_{k in Z} 1 - x^abs(5*k + 1)).
%e G.f. = 1 + x + x^2 + x^3 + 2*x^4 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + x^11 + ...
%e G.f. = q^-1 + q^59 + q^119 + q^179 + 2*q^239 + q^359 + q^419 + 2*q^479 + q^539 + ...
%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^5] / (QPochhammer[ x, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}];
%t a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ -1, 0, 0, -1, 2, -1, 0, 0, -1, 1}[[Mod[k, 10, 1]]], {k, n}], {x, 0, n}];
%o (PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^ [1, -1, 0, 0, -1, 2, -1, 0, 0, -1][k%10+1]), n))};
%Y Cf. A053256, A053266.
%K nonn
%O 0,5
%A _Michael Somos_, Jul 08 2015