login
A258790
a(n) = [x^n] Product_{k=1..n} 1/(x^(3*k)*(1-x^k)).
5
1, 1, 6, 48, 411, 3765, 36308, 363446, 3742085, 39405777, 422669224, 4603472960, 50790334667, 566603884871, 6381702580969, 72481863380510, 829331355150992, 9551576115706329, 110654552651370400, 1288710163262774157, 15080440970246785366, 177237948953055593475
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n / n^2, where d = 12.8718984948677835397002665286811919572579479691341210018008114644121... = r^4/(r-1), where r is the root of the equation polylog(2, 1-r) + 2*log(r)^2 = 0, c = 0.44720199058408831652920046766862756... .
MAPLE
T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n<k, 0, T(n-k, k))) end proc: seq(T(n*(3*n+5)/2, n), n=0..25);
MATHEMATICA
Table[SeriesCoefficient[1/Product[x^(3*k)*(1-x^k), {k, 1, n}], {x, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[1/Product[1-x^k, {k, 1, n}], {x, 0, n*(3*n+5)/2}], {n, 0, 25}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 10 2015
STATUS
approved