login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257519
Number of Motzkin paths of length n with no peaks at level 4.
1
1, 1, 2, 4, 9, 21, 51, 127, 322, 827, 2145, 5607, 14751, 39020, 103713, 276848, 741901, 1995340, 5384554, 14576673, 39579527, 107776557, 294283193, 805649528, 2211176173, 6083560542, 16776970140, 46372110274, 128456563024, 356600559820, 991986172469, 2765030171165, 7722156349298, 21607098380159
OFFSET
0,3
LINKS
FORMULA
G.f.: 1/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x+x^2*(1-M(x)))))), where M(x) is the g.f. of Motzkin numbers A001006.
a(n) ~ 3^(n+7/2)/(98*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 27 2015
EXAMPLE
For n=4 we have 9 paths: HHHH, UDUD, UHDH, HUHD, UHHD, UDHH, HUDH, HHUD and UUDD
MATHEMATICA
CoefficientList[Series[1/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x+x^2*(1-(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2)))))), {x, 0, 30}], x] (* Vaclav Kotesovec, Apr 27 2015 *)
PROG
(PARI) x='x+O('x^50); Vec(1/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x+x^2*(1-(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2))))))) \\ G. C. Greubel, Jun 03 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved