login
A257520
Number of factorizations of m^2 into 2 factors, where m is a product of exactly n distinct primes and each factor is a product of n primes (counted with multiplicity).
3
1, 1, 2, 4, 10, 26, 71, 197, 554, 1570, 4477, 12827, 36895, 106471, 308114, 893804, 2598314, 7567466, 22076405, 64498427, 188689685, 552675365, 1620567764, 4756614062, 13974168191, 41088418151, 120906613076, 356035078102, 1049120176954, 3093337815410
OFFSET
0,3
COMMENTS
Also number of ways to partition the multiset consisting of 2 copies each of 1, 2, ..., n into 2 multisets of size n.
LINKS
FORMULA
G.f.: (1/sqrt((1+x)*(1-3*x))+1/(1-x))/2.
E.g.f.: exp(x)*(1+BesselI(0,2*x))/2.
a(n) = ((3*n^2-7*n+3)*a(n-1) +(n-1)*(n-3)*a(n-2) -3*(n-1)*(n-2)*a(n-3)) / (n*(n-2)) for n>2, a(0) = a(1) = 1, a(2) = 2.
a(n) = (A002426(n)+1)/2.
a(n) = A097861(n)+1.
EXAMPLE
a(4) = 10: (2*3*5*7)^2 = 44100 = 210*210 = 225*196 = 294*150 = 315*140 = 350*126 = 441*100 = 490*90 = 525*84 = 735*60 = 1225*36.
MAPLE
a:= proc(n) option remember; `if`(n<3, [1, 1, 2][n+1],
((3*n^2-7*n+3)*a(n-1) +(n-1)*(n-3)*a(n-2)
-3*(n-1)*(n-2)*a(n-3)) / (n*(n-2)))
end:
seq(a(n), n=0..40);
CROSSREFS
Row n=2 of A257462.
Sequence in context: A055226 A097085 A071962 * A035079 A259206 A106221
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 27 2015
STATUS
approved