login
A257345
Regard the terms of A004290 as binary numbers and convert to base 10.
4
0, 1, 2, 7, 4, 2, 14, 9, 8, 511, 2, 3, 28, 9, 18, 14, 16, 29, 1022, 25, 4, 21, 6, 53, 56, 4, 18, 895, 36, 109, 14, 59, 32, 63, 58, 18, 2044, 7, 50, 21, 8, 31, 42, 109, 12, 1022, 106, 19, 112, 97, 4, 35, 36, 35, 1790, 6, 72, 25, 218, 223, 28, 37, 118, 991, 64
OFFSET
0,3
COMMENTS
Of course the terms of A004290 are already in base 10 (they just happen to involve only the digits 0 and 1), so there is no justification for this sequence other than curiosity.
a(n) < 2^n. - Chai Wah Wu, Apr 29 2015
MATHEMATICA
s = With[{c = Rest[Union[FromDigits /@ Flatten[Table[Tuples[{1, 0}, i], {i, 10}], 1]]]}, Join[{0}, Flatten[Table[Select[c, Divisible[#, n] &, 1], {n, 120}]]]]; FromDigits[IntegerDigits@ #, 2] & /@ s (* Michael De Vlieger, Apr 29 2015, after Harvey P. Dale at A004290 *)
PROG
(Python)
def A257345(n):
if n > 0:
for i in range(1, 2**n):
x = int(format(i, 'b'))
if not x % n:
return int(str(x), 2)
return 0 # Chai Wah Wu, Apr 29 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Apr 29 2015
EXTENSIONS
More terms from Chai Wah Wu, Apr 29 2015
STATUS
approved