Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 Aug 05 2019 11:29:37
%S 1,2,11,27,61,809,13945,268027,565447,2358365,73551683,2734683311,
%T 112599773191,4860900544813,9968041656757,40762420985117,
%U 83151858555707,5085105491885327,341472595155548909,24295409051193284539
%N a(n) is the numerator of Product_{i=1..n} (1/(1-1/prime(i))) - 1.
%C The denominators are A038110(n+1).
%C a(n)/A038110(n+1) = Sum_{k >=2} 1/k where k is a positive integer whose prime factors are among the first n primes. In particular, for n=1,2,3,4,5, a(n)/A038110(n+1) is the sum of the reciprocals of the terms (excepting the first, 1) in A000079, A003586, A051037, A002473, A051038.
%C Appears to be a duplicate of A161527. - _Michel Marcus_, Aug 05 2019
%H Robert Israel, <a href="/A254196/b254196.txt">Table of n, a(n) for n = 1..422</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SmoothNumber.html">Smooth Number</a>
%F a(n) = A038111(n+1)/prime(n+1)-A038110(n+1). - _Robert Israel_, Jan 28 2015, corrected Jul 07 2019.
%e a(1)=1 because 1/2 + 1/4 + 1/8 + 1/16 + ... = 1/1.
%e a(2)=2 because 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/9 + 1/12 + ... = 2/1.
%e a(3)=11 because 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/8 + 1/9 + 1/10 + 1/12 + 1/15 + ... = 11/4.
%e a(4)=27 because Sum_{n>=2} 1/A002473(n) = 27/8.
%e a(5)=61 because Sum_{n>=2} 1/A051038(n) = 61/16.
%p seq(numer(mul(1/(1-1/ithprime(i)),i=1..n)-1),n=1..20); # _Robert Israel_, Jan 28 2015
%t Numerator[Table[Product[1/(1 - 1/p), {p, Prime[Range[n]]}] - 1, {n,1,20}]]
%t b[0] := 0; b[n_] := b[n - 1] + (1 - b[n - 1]) / Prime[n]
%t Numerator@ Table[b[n], {n, 1, 20}] (* _Fred Daniel Kline_, Jun 27 2017 *)
%o (PARI) a(n) = numerator(prod(i=1, n, (1/(1-1/prime(i)))) - 1); \\ _Michel Marcus_, Jun 29 2017
%Y Cf. A038110, A000079, A003586, A051037, A002473, A051038, A161527.
%K nonn
%O 1,2
%A _Geoffrey Critzer_, Jan 26 2015