OFFSET
0,2
COMMENTS
Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = T(n,0)*(x-3)^0 + T(n,1)*(x-3)^1 + T(n,2)*(x-6)^2 + ... + T(n,n)*(x-3n)^n, for n >= 0.
FORMULA
T(n,n-1) = n + 3*n^2 + 3*n^3, for n >= 1.
T(n,n-2) = (n-1)*(9*n^4 - 9*n^3 - 12*n^2 - 6*n + 2)/2, for n >= 2.
T(n,n-3) = (n-2)*(9*n^6 - 54*n^5 + 81*n^4 + 9*n^3 - 12*n^2 - 45*n + 14)/2, for n >= 3.
EXAMPLE
The triangle T(n,k) starts:
n\k 0 1 2 3 4 5 6 7 8 ...
0: 1
1: 7 2
2: 7 38 3
3: 7 362 111 4
4: 7 2522 2271 244 5
5: 7 14672 34671 8344 455 6
6: 7 75908 442911 212464 23135 762 7
7: 7 361676 5015199 4498984 869855 53682 1183 8
8: 7 1621388 52044447 83860840 26997215 2775282 110047 1736 9
...
-----------------------------------------------------------------
n = 3: 1 + 2*x + 3*x^2 + 4*x^3 = 7*(x-0)^0 + 362*(x-3)^1 + 111*(x-6)^2 + 4*(x-9)^3.
PROG
(PARI) T(n, k)=(k+1)-sum(i=k+1, n, (-3*i)^(i-k)*binomial(i, k)*T(n, i))
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Derek Orr, Dec 30 2014
STATUS
approved