login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253383
Triangle read by rows: T(n,k) is the coefficient A_k in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} A_k*(x-3k)^k.
0
1, 7, 2, 7, 38, 3, 7, 362, 111, 4, 7, 2522, 2271, 244, 5, 7, 14672, 34671, 8344, 455, 6, 7, 75908, 442911, 212464, 23135, 762, 7, 7, 361676, 5015199, 4498984, 869855, 53682, 1183, 8, 7, 1621388, 52044447, 83860840, 26997215, 2775282, 110047, 1736, 9, 7, 6935798, 505540767, 1423092160, 732435935, 117592782, 7458367, 205856, 2439, 10
OFFSET
0,2
COMMENTS
Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = T(n,0)*(x-3)^0 + T(n,1)*(x-3)^1 + T(n,2)*(x-6)^2 + ... + T(n,n)*(x-3n)^n, for n >= 0.
FORMULA
T(n,n-1) = n + 3*n^2 + 3*n^3, for n >= 1.
T(n,n-2) = (n-1)*(9*n^4 - 9*n^3 - 12*n^2 - 6*n + 2)/2, for n >= 2.
T(n,n-3) = (n-2)*(9*n^6 - 54*n^5 + 81*n^4 + 9*n^3 - 12*n^2 - 45*n + 14)/2, for n >= 3.
EXAMPLE
The triangle T(n,k) starts:
n\k 0 1 2 3 4 5 6 7 8 ...
0: 1
1: 7 2
2: 7 38 3
3: 7 362 111 4
4: 7 2522 2271 244 5
5: 7 14672 34671 8344 455 6
6: 7 75908 442911 212464 23135 762 7
7: 7 361676 5015199 4498984 869855 53682 1183 8
8: 7 1621388 52044447 83860840 26997215 2775282 110047 1736 9
...
-----------------------------------------------------------------
n = 3: 1 + 2*x + 3*x^2 + 4*x^3 = 7*(x-0)^0 + 362*(x-3)^1 + 111*(x-6)^2 + 4*(x-9)^3.
PROG
(PARI) T(n, k)=(k+1)-sum(i=k+1, n, (-3*i)^(i-k)*binomial(i, k)*T(n, i))
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")))
CROSSREFS
Sequence in context: A295421 A217172 A248791 * A010506 A197845 A082633
KEYWORD
nonn,tabl
AUTHOR
Derek Orr, Dec 30 2014
STATUS
approved