login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253381
Triangle read by rows: T(n,k) appears in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} T(n,k)*(x+2k)^k.
3
1, -3, 2, -3, -22, 3, -3, 122, -69, 4, -3, -518, 891, -156, 5, -3, 1882, -8709, 3444, -295, 6, -3, -6182, 71931, -57036, 9785, -498, 7, -3, 18906, -530181, 789684, -241095, 23022, -777, 8, -3, -54822, 3598587, -9661260, 4919865, -783378, 47607, -1144, 9, -3, 152538, -22943493, 107911860, -87977415, 21896622, -2129673, 89576, -1611, 10
OFFSET
0,2
COMMENTS
Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = T(n,0)*(x+0)^0 + T(n,1)*(x+2)^1 + T(n,2)*(x+4)^2 + ... + T(n,n)*(x+2n)^n for n >= 0.
FORMULA
T(n,n) = n+1, for n >= 0.
T(n,n-1) = n*(1 - 2*n - 2*n^2), for n >= 1.
T(n,n-2) = (n-1)*(2*n^4-2*n^3-6*n^2+2*n+1), for n >= 2.
T(n,n-3) = (2-n)*(4*n^6-24*n^5+26*n^4+54*n^3-72*n^2+9)/3, for n >= 3.
EXAMPLE
From - Wolfdieter Lang, Jan 12 2015: (Start)
The triangle T(n,k) starts:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: -3 2
2: -3 -22 3
3: -3 122 -69 4
4: -3 -518 891 -156 5
5: -3 1882 -8709 3444 -295 6
6: -3 -6182 71931 -57036 9785 -498 7
7: -3 18906 -530181 789684 -241095 23022 -777 8
8: -3 -54822 3598587 -9661260 4919865 -783378 47607 -1144 9
9 : -3 152538 -22943493 107911860 -87977415 21896622 -2129673 89576 -1611 10
... Reformatted.
----------------------------------------------------------------------------------
n = 3: 1 + 2*x + 3*x^2 + 4*x^3 = -3*(x+0)^0 + 122*(x+2)^1 - 69*(x+4)^2 + 4* (x+6)^3. (End)
PROG
(PARI) T(n, k) = (k+1)-sum(i=k+1, n, (2*i)^(i-k)*binomial(i, k)*T(n, i))
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")))
CROSSREFS
Cf. A247236.
Sequence in context: A059239 A350517 A123170 * A091806 A248244 A139170
KEYWORD
sign,tabl
AUTHOR
Derek Orr, Dec 30 2014
EXTENSIONS
Edited; - Wolfdieter Lang, Jan 12 2015
STATUS
approved