login
A252742
Characteristic function of A246282: if A003961(n) > 2*n, then a(n) = 1, otherwise 0 (when A003961(n) < 2*n) [where A003961(n) shifts the prime factorization of n one step towards larger primes].
17
0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1
OFFSET
1
LINKS
FORMULA
a(n) = [A003961(n) > 2*n]. (Here [ ] stands for Iverson bracket.)
Other identities. For all n >= 1:
sgn(A252748(n)) = (-1)^(1+a(n)).
PROG
(Scheme)
(define (A252742 n) (if (> (A003961 n) (* 2 n)) 1 0))
(define (A252742 n) (if (> (A048673 n) n) 1 0))
CROSSREFS
Characteristic function of A246282.
Permutations: A252743, A252744.
Sequence in context: A324883 A106002 A341612 * A066247 A151774 A095792
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 21 2014
STATUS
approved