login
A252269
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 2 3 4 6 or 7
9
103, 130, 130, 258, 272, 258, 598, 822, 822, 598, 1342, 2290, 3016, 2290, 1342, 2900, 6164, 10302, 10302, 6164, 2900, 6330, 17008, 35486, 44612, 35486, 17008, 6330, 14024, 47094, 122506, 188690, 188690, 122506, 47094, 14024, 31000, 129530, 420420
OFFSET
1,1
COMMENTS
Table starts
...103....130......258.......598.......1342........2900.........6330
...130....272......822......2290.......6164.......17008........47094
...258....822.....3016.....10302......35486......122506.......420420
...598...2290....10302.....44612.....188690......800946......3410622
..1342...6164....35486....188690.....984416.....5217924.....27565694
..2900..17008...122506....800946....5217924....34351677....225314758
..6330..47094...420420...3410622...27565694...225314758...1834743688
.14024.129530..1446744..14539062..145417138..1478226653..14935638513
.31000.356572..4990438..61939050..769096470..9717153148.121853394325
.68154.982904.17183040.263654268.4065302050.63795462094.993165752030
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +3*a(n-3) +4*a(n-4) +4*a(n-5) +2*a(n-6) for n>8
k=2: [order 8] for n>9
k=3: [order 15] for n>17
k=4: [order 23] for n>25
k=5: [order 43] for n>45
k=6: [order 71] for n>73
EXAMPLE
Some solutions for n=4 k=4
..3..3..2..3..3..3....0..0..0..0..1..0....0..0..0..0..0..0....0..1..0..0..0..0
..2..3..3..3..2..3....0..1..0..0..0..0....1..0..0..0..0..1....0..0..0..0..1..0
..3..3..3..3..3..3....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
..3..3..3..3..3..3....0..0..0..0..0..0....0..1..0..0..0..0....0..0..0..1..0..0
..3..3..3..3..2..3....0..1..0..0..0..1....0..0..0..0..1..0....1..0..0..0..0..0
..3..2..3..3..3..3....0..0..0..0..1..0....0..0..1..0..0..0....0..0..0..0..1..0
CROSSREFS
Sequence in context: A077404 A139979 A146357 * A252262 A023080 A219785
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 16 2014
STATUS
approved