login
A252266
Number of (n+2)X(5+2) 0..3 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 2 3 4 6 or 7
1
1342, 6164, 35486, 188690, 984416, 5217924, 27565694, 145417138, 769096470, 4065302050, 21466258282, 113390920454, 599189708954, 3165902490958, 16725123385686, 88359158741700, 466828724130764, 2466405305350896
OFFSET
1,1
COMMENTS
Column 5 of A252269
LINKS
FORMULA
Empirical: a(n) = a(n-1) +3*a(n-2) +42*a(n-3) +223*a(n-4) +485*a(n-5) +723*a(n-6) -806*a(n-7) -5802*a(n-8) -7742*a(n-9) -2191*a(n-10) +15114*a(n-11) +38950*a(n-12) +12875*a(n-13) -51485*a(n-14) -62587*a(n-15) -10948*a(n-16) +70876*a(n-17) +106851*a(n-18) +53452*a(n-19) -26830*a(n-20) -86750*a(n-21) -110193*a(n-22) -37947*a(n-23) +2815*a(n-24) +1242*a(n-25) +25129*a(n-26) -34729*a(n-27) -623*a(n-28) -6984*a(n-29) -7065*a(n-30) +17065*a(n-31) -14376*a(n-32) +11137*a(n-33) -9534*a(n-34) +5434*a(n-35) -2728*a(n-36) +1898*a(n-37) -781*a(n-38) +255*a(n-39) -156*a(n-40) +24*a(n-41) +11*a(n-42) -5*a(n-43) for n>45
EXAMPLE
Some solutions for n=4
..0..0..0..0..0..0..0....1..0..0..1..0..0..0....1..0..0..0..0..0..1
..0..0..0..0..0..1..0....0..0..0..0..0..0..1....0..0..0..0..0..0..0
..0..0..1..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
..0..0..0..0..1..0..0....0..0..0..0..0..0..0....0..1..0..0..0..0..0
..0..0..0..0..0..0..1....1..0..0..0..0..0..0....0..0..0..0..1..0..0
..0..1..0..0..0..0..0....0..0..0..0..0..0..0....0..0..1..0..0..0..0
CROSSREFS
Sequence in context: A238910 A043647 A023064 * A253114 A237506 A264385
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 16 2014
STATUS
approved