login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249300
Composite numbers whose concatenation of their aliquot parts, in ascending order, is a palindrome.
1
93, 121, 393, 497, 755, 842, 961, 993, 1042, 1255, 1293, 1642, 1681, 1893, 1897, 3721, 3755, 3997, 4043, 4061, 4442, 5041, 5755, 6797, 8197, 8842, 9993, 11042, 11255, 16593, 17309, 17642, 22255, 23221, 23597, 26242, 26493, 26797, 29793, 30043, 30242, 30383
OFFSET
1,1
LINKS
EXAMPLE
Aliquot parts of 157442 are 1, 2, 78621; their concatenation in ascending order is concat(1,2,78621) = 1278621, which is a palindrome.
MAPLE
with(numtheory): P:=proc(q) local a, b, c, k, n;
for n from 2 to q do if not isprime(n) then a:=sort([op(divisors(n))]); b:=0;
for k from nops(a)-1 by -1 to 1 do b:=b*10^(ilog10(a[k])+1)+a[k]; od; a:=0; c:=b;
for k from 1 to ilog10(b)+1 do a:=10*a+(c mod 10); c:=trunc(c/10); od;
if a=b then print(n); fi; fi; od; end: P(10^9);
PROG
(PARI) isok(n) = {d = vecsort(divisors(n)); if (#d > 2, s = ""; for (i=1, #d-1, s = concat(s, Str(d[i])); ); d = digits(eval(s)); d == Vecrev(d); ); } \\ Michel Marcus, Oct 25 2014
CROSSREFS
Cf. A046449.
Sequence in context: A167776 A099019 A082131 * A153684 A048257 A255991
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Oct 24 2014
STATUS
approved