OFFSET
1,1
COMMENTS
Terms lie between primes separated by a gap of at least 8 (see A083371). - David A. Corneth, Jun 24 2016
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1)=117 (114,115,116,118,119,120 are composite nearest-neighbors);
a(2)=118 (115,116,117,119,120,121 are composite nearest-neighbors).
There are no primes between primes 241 and 251 which gives a gap of 10 between them. Therefore, all numbers between (inclusive) 241 + 4 and 251 - 4 are terms. - David A. Corneth, Jun 24 2016
MATHEMATICA
Select[Range[6!], !PrimeQ[#] && !PrimeQ[#-1] && !PrimeQ[#+1] && !PrimeQ[#-2] && !PrimeQ[#+2] && !PrimeQ[#-3] && !PrimeQ[#+3]&] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
Select[Range@ 414, Times @@ Boole@ Map[CompositeQ, Range[# - 3, # + 3]] == 1 &] (* Michael De Vlieger, Jun 24 2016 *)
PROG
(PARI) lista(n) = {forprime(i=2, n+3, g=nextprime(i+1)-i;
for(j=i+4, i+g-4, print1(j", ")))}
a(n) = {forprime(i=88, , g=nextprime(i+1)-i; n-=max(0, g-7);
if(n<=0, return(i+g-4+n)))}
\\ gives the next term larger than n, whether n is a term or not.
nxt(n) = my(p=nextprime(n), g=0); if(p-n>4, n+1, while(1, q=nextprime(p+1); g=q-p; if(g>7, return(p+4), p=q))) \\ David A. Corneth, Jun 24 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Juri-Stepan Gerasimov, Nov 11 2009
EXTENSIONS
Corrected (93, 144, 145 inserted) by R. J. Mathar, May 30 2010
STATUS
approved