login
A249159
Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
2
1, 1, 1, 3, 2, 2, 4, 7, 2, 2, 15, 18, 24, 4, 4, 24, 57, 30, 36, 4, 4, 105, 174, 282, 88, 100, 8, 8, 192, 561, 414, 570, 120, 132, 8, 8, 945, 1950, 3660, 1620, 2040, 312, 336, 16, 16, 1920, 6555, 6090, 9360, 2820, 3360, 392, 416, 16, 16, 10395, 25290, 53370
OFFSET
0,4
COMMENTS
The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = 1 + n)/(2*f(n-1,x)), where f(0,x) = 1.
(Sum of numbers in row n) = A000982(n+1) for n >= 0.
Column 1 is essentially A081405.
LINKS
Clark Kimberling, Rows 0..100, flattened
FORMULA
f(0,x) = 1/1, so that p(0,x) = 1
f(1,x) = (1 + x)/1, so that p(1,x) = 1 + x;
f(2,x) = (3 + 2 x + x^2)/(1 + x), so that p(2,x) = 3 + 2 x + x^2.
First 6 rows of the triangle of coefficients:
1
1 1
3 2 2
4 7 2 2
15 18 24 4 4
24 57 30 36 4 4
MATHEMATICA
z = 15; f[x_, n_] := 1 + n/(2 f[x, n - 1]); f[x_, 1] = 1;
t = Table[Factor[f[x, n]], {n, 1, z}]
u = Numerator[t]
TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249159 array *)
Flatten[CoefficientList[u, x]] (* A249159 sequence *)
CROSSREFS
Sequence in context: A344985 A325596 A254876 * A230871 A111241 A345055
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Oct 23 2014
STATUS
approved