login
A248796
Numbers n such that Product_{d|(n-2)} phi(d) = Product_{d|(n-1)} phi(d) where phi(x) = Euler totient function (A000010).
3
3, 5, 7, 17, 257, 65537, 2200696, 2619707, 6372796, 40588487, 76466987, 81591196, 118018096, 206569607, 470542487, 525644387, 726638836, 791937616, 971122516, 991172807
OFFSET
1,1
COMMENTS
Numbers n such that A029940(n-2) = A029940(n-1).
The first 5 known Fermat primes (A019434) are terms of this sequence.
Supersequence of A247164 and A247203.
FORMULA
a(n) = A248795(n)+2.
A029940(a(n)) = a(n)-1 if a(n) = prime.
EXAMPLE
17 is in the sequence because A029940(15) = A029940(16) = 64.
PROG
(Magma) [n: n in [3..100000] | (&*[EulerPhi(d): d in Divisors(n-2)]) eq (&*[EulerPhi(d): d in Divisors(n-1)])]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Nov 19 2014
EXTENSIONS
a(7)-a(9) using A248795 by Jaroslav Krizek, Nov 19 2014
a(10)-a(20) using A248795 by Jaroslav Krizek, Nov 25 2014
STATUS
approved