login
A248795
Numbers n such that Product_{d|n} phi(d) = Product_{d|(n+1)} phi(d) where phi(x) = Euler totient function (A000010).
4
1, 3, 5, 15, 255, 65535, 2200694, 2619705, 6372794, 40588485, 76466985, 81591194, 118018094, 206569605, 470542485, 525644385, 726638834, 791937614, 971122514, 991172805
OFFSET
1,2
COMMENTS
Numbers n such that A029940(n) = A029940(n+1).
4294967295 is in this sequence.
FORMULA
a(n) = A248796(n)-2.
EXAMPLE
15 is in the sequence because A029940(15) = A029940(16) = 64.
MATHEMATICA
a248795[n_Integer] := Select[Range[n],
Product[EulerPhi[i], {i, Divisors[#]}] ==
Product[EulerPhi[j], {j, Divisors[# + 1]}] &]; a248795[10^5] (* Michael De Vlieger, Nov 30 2014 *)
PROG
(Magma) [n: n in [1..100000] | (&*[EulerPhi(d): d in Divisors(n)]) eq (&*[EulerPhi(d): d in Divisors(n+1)])]
(PARI) lista(nn) = {d = divisors(1); vcur = prod(k=1, #d, eulerphi(d[k])); for (n=2, nn, d = divisors(n); vnext = prod(k=1, #d, eulerphi(d[k])); if (vnext == vcur, print1(n-1, ", ")); vcur = vnext; ); } \\ Michel Marcus, Nov 23 2014
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Nov 19 2014
EXTENSIONS
a(7)-a(9) from Michel Marcus, Nov 21 2014
a(10)-a(20) from Michel Marcus, Nov 23 2014
STATUS
approved