login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248777
Greatest k such that k^8 divides n!
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 24, 24, 24, 24, 24, 24, 48, 240, 720, 720, 720, 720, 720, 720, 720, 720, 1440, 1440, 1440, 1440, 1440, 10080, 10080, 10080, 20160, 20160, 60480, 60480, 60480, 60480
OFFSET
1,10
COMMENTS
Every term divides all its successors.
LINKS
EXAMPLE
a(10) = 2 because 2^10 divides 8! and if k > 2 then k^8 does not divide 8!.
MATHEMATICA
z = 60; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
m = 8; Table[p[m, n], {n, 1, z}] (* A248776 *)
Table[p[m, n]^(1/m), {n, 1, z}] (* A248777 *)
Table[n!/p[m, n], {n, 1, z}] (* A248778 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 14 2014
STATUS
approved