OFFSET
1,4
COMMENTS
As a fractal sequence, it contains infinitely many copies of itself: removing the first occurrence of each number leaves the original sequence.
REFERENCES
Clark Kimberling, "Fractal sequences and interspersions," Ars Combinatoria 45 (1997) 157-168.
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..200
EXAMPLE
1 ... 2 ... 3 ... 5 ... 9 ... 17 .... 33
4 ... 8 ... 15 .. 29 .. 57 .. 113 ... 225
6 ... 12 .. 23 .. 45 .. 89 .. 177 ... 353
7 ... 14 .. 27 .. 53 .. 105 .. 209 .. 417
10 .. 20 .. 39 .. 77 .. 153 .. 305 .. 609
The numbers 1, 2, 3, 4, 5 appear in rows 1, 1, 1, 2, 1, respectively, so that A248514 = (1, 1, 1, 2, 1, ...).
MATHEMATICA
r = 40; r1 = 10; (* r = # rows of T, r1 = # rows to show*);
c = 40; c1 = 12; (* c = # cols of T, c1 = # cols to show*);
x = GoldenRatio; s[n_] := s[n] = If[n < 1, 0, 2 n - Mod[Total[IntegerDigits[n - 1, 2]], 2]];
mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]; rows = {NestList[s, 1, c]};
Do[rows = Append[rows, NestList[s, mex[Flatten[rows]], r]], {r}];
t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]] (* A248513 array*)
u = Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A248013 sequence*)
row[i_] := row[i] = Table[t[i, j], {j, 1, c}]
f[n_] := Select[Range[r], MemberQ[row[#], n] &]
v = Flatten[Table[f[n], {n, 1, 200}]] (* A248514 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 08 2014
STATUS
approved