login
A248228
Numbers k such that A248227(k+1) = A248227(k).
4
1, 4, 8, 11, 14, 17, 21, 24, 27, 30, 34, 37, 40, 44, 47, 50, 53, 57, 60, 63, 66, 70, 73, 76, 79, 83, 86, 89, 92, 96, 99, 102, 105, 109, 112, 115, 119, 122, 125, 128, 132, 135, 138, 141, 145, 148, 151, 154, 158, 161, 164, 167, 171, 174, 177, 180, 184, 187
OFFSET
1,2
COMMENTS
Since A248227(k+1) - A248227(k) is in {0,1} for k >= 1, A248228 and A248229 are complementary.
LINKS
EXAMPLE
The difference sequence of A248227 is (0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, ...), so that A248228 = (1, 4, 8, 11, 14, 17, 2,...) and A248229 = (2, 3, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18,...), the complement of A248228.
MATHEMATICA
$MaxExtraPrecision = Infinity; z = 400; p[k_] := p[k] = Sum[1/h^4, {h, 1, k}];
N[Table[Zeta[4] - p[n], {n, 1, z/10}]]
f[n_] := f[n] = Select[Range[z], Zeta[4] - p[#] < 1/n^3 &, 1];
u = Flatten[Table[f[n], {n, 1, z}]] (* A248227 *)
Flatten[Position[Differences[u], 0]] (* A248228 *)
Flatten[Position[Differences[u], 1]] (* A248229 *)
f = Table[Floor[1/(Zeta[4] - p[n])], {n, 1, z}] (* A248230 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 05 2014
STATUS
approved