OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = Sum_{i=1..n} sigma_5(i) = Sum_{i=1..n} A001160(i).
a(n) ~ Zeta(6) * n^6 / 6. - Vaclav Kotesovec, Sep 02 2018
a(n) ~ Pi^6 * n^6 / 5670. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..n} (Bernoulli(6, floor(1 + n/k)) - 1/42)/6, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 07 2018
a(n) = Sum_{k=1..n} k^5 * floor(n/k). - Daniel Suteu, Nov 08 2018
MATHEMATICA
Table[Sum[DivisorSigma[5, i], {i, n}], {n, 30}]
Accumulate[DivisorSigma[5, Range[30]]] (* Vaclav Kotesovec, Mar 30 2018 *)
PROG
(PARI) lista(nn) = vector(nn, n, sum(i=1, n, sigma(i, 5))) \\ Michel Marcus, Sep 30 2014
(Magma) [(&+[DivisorSigma(5, j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Nov 07 2018
(Python)
from math import isqrt
def A248076(n): return ((s:=isqrt(n))**3*(s+1)**2*(1-2*s*(s+1)) + sum((q:=n//k)*(12*k**5+q*(q**2*(q*(2*q+6)+5)-1)) for k in range(1, s+1)))//12 # Chai Wah Wu, Oct 21 2023
CROSSREFS
Cf. A001160 (sigma_5).
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Sep 30 2014
STATUS
approved