login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247730
Number of length 4+3 0..n arrays with no disjoint pairs in any consecutive four terms having the same sum
1
8, 334, 3424, 21152, 89836, 303924, 860360, 2143214, 4811604, 9963600, 19277184, 35285668, 61579724, 103227698, 167041476, 262183860, 400496168, 597331512, 871946544, 1248604446, 1757018272, 2433781036, 3322847752, 4477336960
OFFSET
1,1
COMMENTS
Row 4 of A247726
LINKS
FORMULA
Empirical: a(n) = a(n-2) +2*a(n-3) +2*a(n-4) -a(n-5) -2*a(n-6) -4*a(n-7) -3*a(n-8) -a(n-9) +a(n-10) +4*a(n-11) +6*a(n-12) +5*a(n-13) +2*a(n-14) -2*a(n-15) -6*a(n-16) -6*a(n-17) -6*a(n-18) -2*a(n-19) +2*a(n-20) +5*a(n-21) +6*a(n-22) +4*a(n-23) +a(n-24) -a(n-25) -3*a(n-26) -4*a(n-27) -2*a(n-28) -a(n-29) +2*a(n-30) +2*a(n-31) +a(n-32) -a(n-34)
Also a polynomial of degree 7 plus a cubic quasipolynomial with period 420. The first 12 are :
Empirical for n mod 420 = 0: a(n) = 1*n^7 - 1*n^6 + (653/60)*n^5 - (139/9)*n^4 + (41057/1260)*n^3 - (13277/420)*n^2 + (137/7)*n
Empirical for n mod 420 = 1: a(n) = 1*n^7 - 1*n^6 + (653/60)*n^5 - (139/9)*n^4 + (35387/1260)*n^3 - (8657/420)*n^2 + (1/63)*n + (913/180)
Empirical for n mod 420 = 2: a(n) = 1*n^7 - 1*n^6 + (653/60)*n^5 - (139/9)*n^4 + (41057/1260)*n^3 - (37591/1260)*n^2 + (631/63)*n + (2353/315)
Empirical for n mod 420 = 3: a(n) = 1*n^7 - 1*n^6 + (653/60)*n^5 - (139/9)*n^4 + (35387/1260)*n^3 - (8657/420)*n^2 - (149/21)*n + (417/20)
Empirical for n mod 420 = 4: a(n) = 1*n^7 - 1*n^6 + (653/60)*n^5 - (139/9)*n^4 + (41057/1260)*n^3 - (13277/420)*n^2 + (1681/63)*n - (4136/315)
Empirical for n mod 420 = 5: a(n) = 1*n^7 - 1*n^6 + (653/60)*n^5 - (139/9)*n^4 + (35387/1260)*n^3 - (23731/1260)*n^2 - (1301/63)*n + (10547/252)
Empirical for n mod 420 = 6: a(n) = 1*n^7 - 1*n^6 + (653/60)*n^5 - (139/9)*n^4 + (41057/1260)*n^3 - (13277/420)*n^2 + (165/7)*n - (369/35)
Empirical for n mod 420 = 7: a(n) = 1*n^7 - 1*n^6 + (653/60)*n^5 - (139/9)*n^4 + (35387/1260)*n^3 - (8657/420)*n^2 + (1/63)*n + (1561/180)
Empirical for n mod 420 = 8: a(n) = 1*n^7 - 1*n^6 + (653/60)*n^5 - (139/9)*n^4 + (41057/1260)*n^3 - (37591/1260)*n^2 + (379/63)*n + (862/45)
Empirical for n mod 420 = 9: a(n) = 1*n^7 - 1*n^6 + (653/60)*n^5 - (139/9)*n^4 + (35387/1260)*n^3 - (8657/420)*n^2 - (149/21)*n + (2319/140)
Empirical for n mod 420 = 10: a(n) = 1*n^7 - 1*n^6 + (653/60)*n^5 - (139/9)*n^4 + (41057/1260)*n^3 - (13277/420)*n^2 + (1933/63)*n - (175/9)
Empirical for n mod 420 = 11: a(n) = 1*n^7 - 1*n^6 + (653/60)*n^5 - (139/9)*n^4 + (35387/1260)*n^3 - (23731/1260)*n^2 - (1301/63)*n + (62311/1260)
EXAMPLE
Some solutions for n=5
..5....4....3....0....5....2....0....2....0....4....1....2....1....4....1....0
..4....0....5....4....1....2....5....3....4....4....0....2....3....2....3....3
..3....3....5....4....3....5....5....1....0....1....1....0....1....1....2....2
..0....3....2....5....4....3....3....3....0....5....3....1....5....1....5....2
..4....2....0....1....1....3....0....2....1....4....1....5....1....1....2....4
..2....3....5....4....5....0....1....5....3....1....5....3....1....3....1....3
..0....3....2....3....1....1....3....1....3....3....4....4....2....5....3....0
CROSSREFS
Sequence in context: A226551 A374307 A285370 * A258745 A071306 A214511
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 23 2014
STATUS
approved