OFFSET
1,1
COMMENTS
Table starts
.8....48.....168......440.......960.......1848........3248.........5328
.8....90.....456.....1592......4344......10098.......20816........39264
.8...172....1248.....5796.....19744......55372......133780.......290004
.8...334....3424....21152.....89836.....303924......860360......2143214
.8...656....9392....77236....408644....1668072.....5532212.....15837692
.8..1300...25822...282384...1859736....9157806....35577396....117045466
.8..2584...71060..1032952...8465936...50284864...228817500....865051288
.8..5148..195536..3779018..38539276..276119316..1471661464...6393427268
.8.10272..537880.13825712.175434372.1516191100..9465023576..47252411120
.8.20520.1480026.50587924.798617096.8325624724.60874728614.349232818280
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..9999
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +2*a(n-4) -4*a(n-5)
k=3: [order 27]
k=4: [order 45]
k=5: [order 76]
Empirical for row n:
n=1: a(n) = n^4 + 2*n^3 + 3*n^2 + 2*n
n=2: a(n) = 4*a(n-1) -4*a(n-2) -4*a(n-3) +10*a(n-4) -4*a(n-5) -4*a(n-6) +4*a(n-7) -a(n-8); also a polynomial of degree 5 plus a linear quasipolynomial with period 2
n=3: [order 16; also a polynomial of degree 6 plus a quadratic quasipolynomial with period 12]
n=4: [order 34; also a polynomial of degree 7 plus a cubic quasipolynomial with period 420]
n=5: [order 72]
EXAMPLE
Some solutions for n=4 k=4
..1....0....3....2....4....2....0....1....1....4....1....0....2....3....3....1
..1....1....0....3....3....1....3....0....0....0....1....3....3....3....0....1
..4....1....1....2....0....4....2....4....4....4....0....0....3....0....3....4
..1....4....1....0....0....0....4....1....4....4....3....4....0....2....2....2
..1....3....1....0....4....0....0....1....4....2....0....2....4....4....4....2
..2....3....0....1....2....2....1....0....0....4....4....1....0....4....0....1
..1....1....1....3....3....3....0....1....2....4....3....2....1....3....0....0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 23 2014
STATUS
approved