OFFSET
1,1
COMMENTS
Contains all numbers of the form m = A001146(k) = 2^2^k, k >= 0; and those with k > 1 seem to form the intersection with A247165. - M. F. Hasler, Jul 25 2015
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..105
EXAMPLE
2 is in this sequence because 2^2 - 1 = 3 divides 2^2 - 1 = 3.
MATHEMATICA
Select[Range[10^4], Divisible[2^# - 1, #^2 - 1] &] (* Alonso del Arte, Nov 26 2014 *)
Select[Range[2, 121*10^4], PowerMod[2, #, #^2-1]==1&] (* Harvey P. Dale, Sep 08 2021 *)
PROG
(Magma) [n: n in [2..122222] | Denominator((2^n - 1)/(n^2 - 1)) eq 1];
(PARI) isok(n) = ((2^n - 1) % (n^2 - 1)) == 0; \\ Michel Marcus, Nov 26 2014
(Python)
from gmpy2 import powmod
A247219_list = [n for n in range(2, 10**7) if powmod(2, n, n*n-1) == 1]
# Chai Wah Wu, Dec 03 2014
(PARI) forstep(n=0, 1e8, 2, Mod(2, n^2-1)^n-1 || print1(n", ")) \\ M. F. Hasler, Jul 25 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Juri-Stepan Gerasimov, Nov 26 2014
EXTENSIONS
Corrected a(24) by Chai Wah Wu, Dec 03 2014
STATUS
approved