OFFSET
1,2
COMMENTS
See the comments in A246675. This is otherwise similar permutation, except that after having reached an even number 2m when we have shifted the prime factorization of n+1 k steps towards smaller primes, here, in contrary to A246675, we don't shift the binary representation of the odd number 2m-1, but instead of an odd number (2*a(m))-1 the same number (k) of bit-positions leftward, i.e. multiply it with 2^k.
See also the comments at the inverse permutation A246684.
LINKS
FORMULA
As a composition of other permutations:
Other identities. For all n >= 1, the following holds:
a(n) = (1+a((2*n)-1))/2. [The odd bisection from a(1) onward with one added and then halved gives the sequence back].
EXAMPLE
Consider 44 = 45-1. To find 45's position in array A246278, we start shifting its prime factorization 45 = 3 * 3 * 5 = p_2 * p_2 * p_3, step by step, until we get an even number, which in this case happens immediately after the first step, as p_1 * p_1 * p_2 = 2*2*3 = 12. 12 is in the 6th column of A246278, thus we take [here a(6) is computed recursively in the same way:] (2*a(6))-1 = (2*8)-1 = 15, "1111" in binary, and shift it one bit left (that is, multiply by 2), to give 2*15 = 30, thus a(44) = 30.
PROG
CROSSREFS
Inverse: A246684.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 06 2014
STATUS
approved