login
A245702
Permutation of natural numbers: a(1) = 1, a(2n) = A014580(a(n)), a(2n+1) = A091242(a(n)), where A014580(n) = binary code for n-th irreducible polynomial over GF(2) and A091242(n) = binary code for n-th reducible polynomial over GF(2).
9
1, 2, 4, 3, 5, 11, 8, 7, 6, 13, 9, 47, 17, 31, 14, 25, 12, 19, 10, 59, 20, 37, 15, 319, 62, 87, 24, 185, 42, 61, 21, 137, 34, 55, 18, 97, 27, 41, 16, 415, 76, 103, 28, 229, 49, 67, 22, 3053, 373, 433, 79, 647, 108, 131, 33, 1627, 222, 283, 54, 425, 78, 109, 29, 1123, 166, 203, 45, 379, 71, 91, 26, 731, 121, 145, 36, 253, 53, 73, 23
OFFSET
1,2
FORMULA
a(1) = 1, a(2n) = A014580(a(n)), a(2n+1) = A091242(a(n)).
As a composition of related permutations:
a(n) = A245703(A227413(n)).
Other identities:
For all n >= 1, 1 - A091225(a(n)) = A000035(n). [Maps even numbers to binary representations of irreducible GF(2) polynomials (= A014580) and odd numbers to the corresponding representations of reducible polynomials].
PROG
(PARI)
allocatemem(123456789);
a014580 = vector(2^18);
a091242 = vector(2^22);
isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
i=0; j=0; n=2; while((n < 2^22), if(isA014580(n), i++; a014580[i] = n, j++; a091242[j] = n); n++)
A245702(n) = if(1==n, 1, if(0==(n%2), a014580[A245702(n/2)], a091242[A245702((n-1)/2)]));
for(n=1, 383, write("b245702.txt", n, " ", A245702(n)));
(Scheme, with memoizing definec-macro)
(definec (A245702 n) (cond ((< n 2) n) ((even? n) (A014580 (A245702 (/ n 2)))) (else (A091242 (A245702 (/ (- n 1) 2))))))
CROSSREFS
Inverse: A245701.
Similar entanglement permutations: A193231, A227413, A237126, A243288, A245703, A245704.
Sequence in context: A338161 A232799 A276472 * A297706 A374799 A093416
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 02 2014
STATUS
approved