login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245493
a(n) = n! * [x^n] (exp(x)+x^2/2!)^n.
3
1, 1, 6, 45, 508, 7225, 126306, 2606065, 62075952, 1675774089, 50565938050, 1686510607111, 61609858744248, 2446470026497705, 104922088624078194, 4833250468667819325, 238004208840601580416, 12476420334546637657489, 693675026024580055139778
OFFSET
0,3
COMMENTS
In general, if a(n) = n! * [x^n] (exp(x) + x^k/k!)^n, k>=1, then limit n-> infinity (a(n)/n!)^(1/n) = ((1-k*r)/(1-r))^(k-1) / (r*k!), where r is the root of the equation exp((k*r-1)/(1-r)) = r*k! * (1-r)^(k-1) / (1-k*r)^k.
LINKS
FORMULA
a(n) ~ c * d^n * n^n / exp(n), where d = (1-2*r)/(2*r*(1-r)) = 3.177499696443893762475339445134038..., where r = 0.13317988718414524112... is the root of the equation exp((2*r-1)/(1-r)) = 2*r*(1-r)/(1-2*r)^2, and c = 1.061620103934913384222610538939... .
MATHEMATICA
Table[n!*SeriesCoefficient[(E^x + x^2/2)^n, {x, 0, n}], {n, 0, 20}]
With[{k=2}, Flatten[{1, Table[Sum[Binomial[n, j]*Binomial[n, k*j]*(n-j)^(n-k*j)*(k*j)!/(k!)^j, {j, 0, n/k}], {n, 1, 20}]}]]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jul 24 2014
STATUS
approved