login
A243202
Coefficients of a particular decomposition of N^N in terms of binomial coefficients.
2
0, 0, 1, 0, 1, 2, 0, 3, 4, 6, 0, 16, 16, 18, 24, 0, 125, 100, 90, 96, 120, 0, 1296, 864, 648, 576, 600, 720, 0, 16807, 9604, 6174, 4704, 4200, 4320, 5040, 0, 262144, 131072, 73728, 49152, 38400, 34560, 35280, 40320, 0
OFFSET
0,6
COMMENTS
a(n) is an element in the triangle of coefficients c(N,j), N = 0,1,2,3,... denoting a row, and j = 0,1,2,...r, specified numerically by the formula below. For any row N, Sum(j=0..N)(c(N,j)*binomial(N,j)) = N^N. Note that all rows start with 0, which makes them easily recognizable. It is believed that keeping the zero terms is preferable because it makes the summation run over all admissible j's in the binomial.
FORMULA
c(N,j)=N^(N-j)*(j/N)*j! for N>0 and 0<=j<=N, and c(N,j)=0 otherwise.
EXAMPLE
The first rows of the triangle are (first item is the row number N):
0 0
1 0, 1
2 0, 1, 2
3 0, 3, 4, 6
4 0, 16, 16, 18, 24
5 0, 125, 100, 90, 96, 120
6 0, 1296, 864, 648, 576, 600, 720
7 0, 16807, 9604, 6174, 4704, 4200, 4320, 5040
8 0, 262144, 131072, 73728, 49152, 38400, 34560, 35280, 40320
PROG
(PARI) A243202(maxrow) = {
my(v, n, j, irow, f); v = vector((maxrow+1)*(maxrow+2)/2);
for(n=1, maxrow, irow=1+n*(n+1)/2; v[irow]=0; f=1;
for(j=1, n, f *= j; v[irow+j] = j*f*n^(n-j-1); ); );
return(v); }
CROSSREFS
Cf. A243203.
Sequence in context: A139637 A307734 A363346 * A257136 A344059 A258871
KEYWORD
nonn,easy,tabl
AUTHOR
Stanislav Sykora, Jun 01 2014
STATUS
approved