login
A243066
Permutation of natural numbers, the even bisection of A241909 incremented by one and halved; equally, a composition of A241909 and A048673: a(n) = A048673(A241909(n)).
18
1, 2, 5, 3, 14, 13, 41, 4, 8, 63, 122, 25, 365, 313, 38, 6, 1094, 18, 3281, 172, 188, 1563, 9842, 61, 23, 7813, 11, 1201, 29525, 123, 88574, 7, 938, 39063, 113, 39, 265721, 195313, 4688, 666, 797162, 858, 2391485, 8404, 74, 976563, 7174454, 85, 68, 88, 23438, 58825, 21523361, 28
OFFSET
1,2
COMMENTS
For n > 1, 2n is found in A241909 from the position (2*a(n))-1. I.e., A241909((2*a(n))-1) = 2n for all n >= 2.
Or in other words, a(n) gives the position in the odd bisection of A241909 where 2n is located at.
Are there any other fixed points than 1, 2, 18 and 72?
FORMULA
a(1) = 1, a(n) = (A241909(2*n)+1)/2.
As a composition of related permutations:
a(n) = A048673(A241909(n)).
a(n) = A241909(A243062(A241909(n))).
For all n>=1, a(2^n) = A006254(n).
PROG
(Scheme, two alternatives)
(define (A243066 n) (if (= n 1) 1 (/ (+ 1 (A241909 (* 2 n))) 2)))
(define (A243066 n) (A048673 (A241909 n)))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 01 2014
STATUS
approved