login
A243046
Number of solutions to k*n/(k+n) = x and k*n/(k-n) = y for integers x and y and natural number k.
6
0, 0, 1, 1, 0, 2, 0, 1, 1, 1, 0, 5, 0, 0, 3, 1, 0, 2, 0, 2, 2, 0, 0, 7, 0, 0, 1, 2, 0, 5, 0, 1, 1, 0, 1, 6, 0, 0, 1, 4, 0, 4, 0, 1, 4, 0, 0, 7, 0, 1, 1, 1, 0, 2, 1, 2, 1, 0, 0, 13, 0, 0, 3, 1, 0, 3, 0, 1, 1, 2, 0, 8, 0, 0, 3, 1, 0, 3, 0, 4, 1, 0, 0, 10, 0, 0, 1, 1, 0, 7, 1, 1, 1, 0, 0, 7, 0, 0, 2
OFFSET
1,6
COMMENTS
Question: Is there any direct formula for this sequence? Cf. for example A146564. - Antti Karttunen, Feb 18 2023
LINKS
FORMULA
a(n) <= A063647(n), a(n) <= A146564(n). - Antti Karttunen, Feb 18 2023
EXAMPLE
6*k/(k-6) and 6*k/(k+6) are integers for k = 3 (-6 and 2, respectively) and k = 12 (12 and 4, respectively). Thus a(6) = 2.
PROG
(PARI) a(n)={t=0; for(k=1, n*(n+1), if(k!=n, if((k*n)%(k+n)==0&&(k*n)%(k-n)==0, t+=1))); return(t)} \\ - Typo corrected by Antti Karttunen, Feb 18 2023
n=1, while(n<100, print1(a(n), ", "); n+=1)
(PARI) A243046(n) = sum(k=1, n*(n+1), (k!=n && !((k*n)%(k+n)) && !((k*n)%(k-n)))); \\ Antti Karttunen, Feb 18 2023
CROSSREFS
Cf. A063647, A146564, A243017, A243045, A243047 (positions of 0's), A360120 (their characteristic function).
Sequence in context: A099362 A321378 A307039 * A058940 A141684 A152492
KEYWORD
nonn
AUTHOR
Derek Orr, May 29 2014
STATUS
approved