login
A241820
Number of partitions p = [x(1), ..., x(k)], where x(1) >= x(2) >= ... >= x(k), of n such that max(x(i) - x(i-1)) = number of distinct parts of p.
6
0, 0, 0, 0, 1, 1, 2, 2, 5, 3, 10, 10, 13, 18, 25, 25, 39, 48, 54, 78, 95, 113, 142, 183, 215, 270, 322, 396, 480, 587, 686, 845, 1022, 1210, 1453, 1730, 2081, 2459, 2945, 3454, 4108, 4838, 5744, 6707, 7959, 9216, 10938, 12692, 14934, 17346, 20296, 23526
OFFSET
0,7
FORMULA
a(n) = A241819(n) - A241818(n) for n >= 0.
a(n) + A241818(n) + A241822 (n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 2 partitions: 42, 3111.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; d[p_] := d[p] = Length[DeleteDuplicates[p]]; g[p_] := Max[-Differences[p]];
Table[Count[f[n], p_ /; g[p] < d[p]], {n, 0, z}] (* A241818 *)
Table[Count[f[n], p_ /; g[p] <= d[p]], {n, 0, z}] (* A241819 *)
Table[Count[f[n], p_ /; g[p] == d[p]], {n, 0, z}] (* A241820 *)
Table[Count[f[n], p_ /; g[p] >= d[p]], {n, 0, z}] (* A241821 *)
Table[Count[f[n], p_ /; g[p] > d[p]], {n, 0, z}] (* A241822 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 30 2014
STATUS
approved