OFFSET
0,3
COMMENTS
The partition {n} is included in the count.
EXAMPLE
a(6) counts these 6 partitions: 6, 51, 411, 33, 3111, 222, 2211, 21111, 111111.
MATHEMATICA
z = 55; f[n_] := f[n] = IntegerPartitions[n]; g[p_] := Max[-Differences[p]]; g1[p_] := Min[-Differences[p]];
Table[Count[f[n], p_ /; MemberQ[p, g[p]]], {n, 0, z}] (* A241735 *)
Table[Count[f[n], p_ /; ! MemberQ[p, g[p]]], {n, 0, z}] (* A241736 *)
Table[Count[f[n], p_ /; MemberQ[p, g1[p]]], {n, 0, z}] (* A241760 *)
Table[Count[f[n], p_ /; ! MemberQ[p, g1[p]]], {n, 0, z}](* A241761 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 28 2014
STATUS
approved