login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240008
Number of Dyck paths of semilength 2n such that the area between the x-axis and the path is 4n.
3
1, 1, 3, 14, 65, 301, 1419, 6786, 32749, 159108, 777224, 3813745, 18783934, 92811389, 459832745, 2283628771, 11364500644, 56659024320, 282939657220, 1414980598167, 7085590965083, 35523567248527, 178289298823240, 895697952270827, 4503912366189604
OFFSET
0,3
LINKS
FORMULA
a(n) = A129182(2n,4n) = A239927(4n,2n).
a(n) ~ c * d^n / sqrt(n), where d = 5.134082940807122222912767966569622... and c = 0.198313337349936555418443931967... - Vaclav Kotesovec, Apr 01 2014
MAPLE
b:= proc(x, y, k) option remember;
`if`(y<0 or y>x or k<0 or k>x^2/2-(y-x)^2/4, 0,
`if`(x=0, 1, b(x-1, y-1, k-y+1/2) +b(x-1, y+1, k-y-1/2)))
end:
a:= n-> b(4*n, 0, 4*n):
seq(a(n), n=0..30);
MATHEMATICA
b[x_, y_, k_] := b[x, y, k] = If[y<0 || y>x || k<0 || k>x^2/2-(y-x)^2/4, 0, If[x==0, 1, b[x-1, y-1, k-y+1/2] + b[x-1, y+1, k-y-1/2]]];
a[n_] := b[4n, 0, 4n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 01 2017, translated from Maple *)
CROSSREFS
Sequence in context: A247978 A026592 A034275 * A151322 A373450 A351068
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 30 2014
STATUS
approved