login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129182
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n such that the area between the x-axis and the path is k (n>=0; 0<=k<=n^2).
9
1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 3, 0, 3, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 4, 0, 6, 0, 7, 0, 7, 0, 5, 0, 5, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 5, 0, 10, 0, 14, 0, 17, 0, 16, 0, 16, 0, 14, 0, 11, 0, 9, 0, 7, 0, 5, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0
OFFSET
0,14
COMMENTS
Row n has n^2 + 1 terms.
Row sums are the Catalan numbers (A000108).
Sum(k*T(n,k), k=0..n^2) = A008549(n).
Sums along falling diagonals give A005169. - Joerg Arndt, Mar 29 2014
T(2n,4n) = A240008(n). - Alois P. Heinz, Mar 30 2014
LINKS
FORMULA
G.f.: G(t,z) given by G(t,z) = 1+t*z*G(t,t^2*z)*G(t,z).
Sum_{k=0..n^2} (n^2-k)/2 * T(n,k) = A139262(n). - Alois P. Heinz, Mar 31 2018
EXAMPLE
T(4,10) = 3 because we have UDUUUDDD, UUUDDDUD and UUDUDUDD.
Triangle starts:
1;
0,1;
0,0,1,0,1;
0,0,0,1,0,2,0,1,0,1;
0,0,0,0,1,0,3,0,3,0,3,0,2,0,1,0,1;
0,0,0,0,0,1,0,4,0,6,0,7,0,7,0,5,0,5,0,3,0,2,0,1,0,1;
Transposed triangle (A239927) begins:
00: 1;
01: 0, 1;
02: 0, 0, 1;
03: 0, 0, 0, 1;
04: 0, 0, 1, 0, 1;
05: 0, 0, 0, 2, 0, 1;
06: 0, 0, 0, 0, 3, 0, 1;
07: 0, 0, 0, 1, 0, 4, 0, 1;
08: 0, 0, 0, 0, 3, 0, 5, 0, 1;
09: 0, 0, 0, 1, 0, 6, 0, 6, 0, 1;
10: 0, 0, 0, 0, 3, 0, 10, 0, 7, 0, 1;
11: 0, 0, 0, 0, 0, 7, 0, 15, 0, 8, 0, 1;
12: 0, 0, 0, 0, 2, 0, 14, 0, 21, 0, 9, 0, 1;
13: 0, 0, 0, 0, 0, 7, 0, 25, 0, 28, 0, 10, 0, 1;
14: 0, 0, 0, 0, 1, 0, 17, 0, 41, 0, 36, 0, 11, 0, 1;
15: 0, 0, 0, 0, 0, 5, 0, 35, 0, 63, 0, 45, 0, 12, 0, 1;
16: 0, 0, 0, 0, 1, 0, 16, 0, 65, 0, 92, 0, 55, 0, 13, 0, 1;
17: 0, 0, 0, 0, 0, 5, 0, 40, 0, 112, 0, 129, 0, 66, 0, 14, 0, 1;
18: 0, 0, 0, 0, 0, 0, 16, 0, 86, 0, 182, 0, 175, 0, 78, 0, 15, 0, 1;
19: 0, 0, 0, 0, 0, 3, 0, 43, 0, 167, 0, 282, 0, 231, 0, 91, 0, 16, 0, 1;
20: 0, 0, 0, 0, 0, 0, 14, 0, 102, 0, 301, 0, 420, 0, 298, 0, 105, 0, 17, 0, 1;
... - Joerg Arndt, Mar 25 2014
MAPLE
G:=1/(1-t*z*g[1]): for i from 1 to 11 do g[i]:=1/(1-t^(2*i+1)*z*g[i+1]) od: g[12]:=0: Gser:=simplify(series(G, z=0, 11)): for n from 0 to 7 do P[n]:=sort(coeff(Gser, z, n)) od: for n from 0 to 7 do seq(coeff(P[n], t, j), j=0..n^2) od; # yields sequence in triangular form
# second Maple program:
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
expand(b(x-1, y-1)*z^(y-1/2)+ b(x-1, y+1)*z^(y+1/2))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0)):
seq(T(n), n=0..10); # Alois P. Heinz, Mar 29 2014
MATHEMATICA
b[x_, y_] := b[x, y] = If[y<0 || y>x, 0, If[x==0, 1, Expand[b[x-1, y-1]*z^(y-1/2) + b[x-1, y+1]*z^(y+1/2)]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A000108, A008549, A139262, A240008, A143951 (column sums).
Sequence in context: A016406 A370078 A372332 * A116857 A369934 A374328
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Apr 08 2007
STATUS
approved